Cell Markers
Konstantin Yakimchuk (Konstantin dot Yakimchuk at ki dot se)
Karolinska Institutet, Sweden
DOI
//dx.doi.org/10.13070/mm.en.3.183
Date
last modified : 2022-11-18; original version : 2013-05-02
Cite as
MATER METHODS 2013;3:183
Abstract

A compilation of immunohistochemical markers for all major cell types, excluding neural cells.

Adipocytes

Adipocytes differentiate from mesenchymal stem cells and compose adipose tissue. Three classes of transcription factor are known to directly influence adipocyte development. These include PPARγ, C/EBPs, and the basic helix–loop–helix family (ADD1/SREBP1c) [1]. There are two types of adipocytes: white, beige and brown adipose tissue. White adipose tissue maintains energy metabolism by storing energy as lipids. Brown adipose tissue (BAT) is a key site of thermogenesis in mammals. Mitochondria in brown adipocytes contain uncoupling protein-1 (UCP1). UCP1-expressing adipocytes, developed in white adipose tissue (WAT), have been named beige adipocytes [2].

Adipose tissue can be stained by perilipin [3]. A number of specific marker genes have been identified for different types of adipocytes. Gene markers such as leptin, HOXC8 and HOXC9 are specific for white adipocytes [4]. Brown adipocytes express Ucp1 [2]. Other important markers of brown adipocytes include CIDEA, and PRDM16 [4], Zic1 [5], Lhx8 [5], Eva1 [6] and Epsti1 [7] and the beige markers include Cd137 [6], Tmem26 [6], Tbx1 [6], Cited1 [7] and Shox2 [8].

Beige adipocytes express a unique gene expression profile. Beige adipocytes express the following markers: Cd137 [6], Tmem26 [6], Tbx1 [6], Cited1 [7] and Shox2 [8], TBX1 and TMEM26 [4]. Beige cell surface proteins CD137 or TMEM26 can be used to identify primary beige fat cell precursors [6].

A recent article reports that amino acid transporter ASC-1, amino acid transporter PAT2, and purinergic receptor P2RX5 are cell surface markers for white, beige, and brown adipocytes, respectively [9]. Flaherty SE et al used ATGL and FABP4 as adipocyte markers [10].

Protein Top three suppliers Reference
FABP4 / fatty acid binding protein 4Cell Signaling Technology 3544 (11), Abcam ab92501 (7), Santa Cruz Biotechnology sc-271529 (7) [10]
LEP / leptinSino Biological 10221-MM01 (4), Santa Cruz Biotechnology sc-393043 (1) [4]
PLIN1 / perilipinCell Signaling Technology 9349 (30), Santa Cruz Biotechnology sc-390169 (3), Abcam ab172907 (1) [3]
PNPLA2 / ATGLCell Signaling Technology 2439 (19), Abcam AB109251 (8), Santa Cruz Biotechnology sc-365278 (5) [10]
UCP1 / uncoupling protein 1R&D Systems MAB6158 (9), Abcam ab209483 (3), MilliporeSigma SAB1404511 (1) [2, 3]
Table 1. Major adipocyte markers and their number of citations with antibody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Endothelial cells

Endothelial cells form the interior surface of all blood vessels, from largest arterias and veins to capillaries. A large number of exclusive and non-exclusive endothelial markers have been identified.

Exclusive endothelial cell markers include von Willebrand factor [11], vascular endothelial cadherin (VE-cadherin, CD144) [12], thrombomodulin (CD141) [13] and Pathologische Anatomie Leiden-endothelium (PAL-E) [14]. Importantly, PAL-E as a specific marker for vascular endothelium, is used to distinguish between vascular and lymphatic endothelium. Other markers distinguishing lymphatic endothelial cells from vascular ones include Lyve-1 [15], Prox1 [15], podoplanin (also a marker for mesothelia [16] ), and vascular endothelial growth factor receptor 3 (VEGFR3) [15, 17, 18]. Double immunostaining for D2-40 podoplanin/CD31 and for PROX1/CD31 was found to distinguishing lymphatic vs. venous blood vessels in dura samples [19]. Besides, MECA-79 and the Daffy antigen receptor for chemokines (DARC) were shown to be highly specific for endothelial cells [11]. H Hu et al stained endothelial cells in human mature arteriovenous fistulae with the Abcam antibody against VWF ( ab11713). Gur-Cohen S et al used endomucin as the marker for blood capillaries [15]. Gifford CA et al labeled endothelial cells in mouse hearts with endomucin [20].

Non-exclusive endothelial specific markers include CLEC4G [21], platelet/EC adhesion molecule-1 (PECAM-1, CD31) [22, 23], transglutaminase 2 / tissue transglutaminase / TG2 [24], vascular endothelial growth factor receptors (VEGFRs): VEGF R1 (Flt-1), VEGF R2 (KDR/Flk-1), and VEGF R3, CD146 (MUC-18, S-endo), UEA-1 (Ulex europaeus I agglutinin), eNOS (endothelial nitric oxide synthase), and Griffonia simplicifolia isolectin B4 (IsoB4). IsoB4 can be delivered in vivo to identify vascular endothelial cells [25, 26].

Other markers, which are important for the activation of endothelial cells, include CD146 (MUC-18, S-endo), thrombomodulin (CD141), ICAM-1 (intercellular adhesion molecule, CD54), E-selectin (CD62E) [27], and apelin [28].

Protein Top three suppliers Reference
apelinSanta Cruz Biotechnology sc-293441 (2)
CD146 (MUC-18, S-endo)BD Biosciences 550315 (8), Santa Cruz Biotechnology sc-18837 (5), Abcam ab75769 (5)
CLEC4G [21]
Daffy antigen receptor for chemokines (DARC)Miltenyi Biotec 130-105-685 (1), R&D Systems MAB4139 (1)
E-selectin (CD62E)Invitrogen MA1-22165 (2), BD Biosciences 551145 (2), BioLegend 322606 (1)
endomucinAbcam ab106100 (8) [15]
eNOS (endothelial nitric oxide synthase)BD Biosciences 610297 (22), Cell Signaling Technology 9570 (15), Abcam ab76198 (14)
ICAM-1 (intercellular adhesion molecule, CD54)Santa Cruz Biotechnology sc-8439 (14), Abcam ab2213 (8), Invitrogen 14-0549-82 (8)
Lyve-1 (for lymphatic EC)Abcam ab183501 (1) [15, 22, 29]
platelet/EC adhesion molecule-1 (PECAM-1, CD31)Dako M0823 (115), Invitrogen MA5-13188 (67), Dianova DIA-310 (48) [21, 29]
podoplanin (DARC)Dako M3619 (18), Novus Biologicals NB600-1015 (14), BioLegend 916602 (6) [23, 29]
Prox1 (for lymphatic EC)Angiobio 11-002 (9), Abcam ab199359 (2) [29]
TGM2 / TG2 (transglutaminase 2)Invitrogen MA5-12739 (127), Abcam ab2386 (7), Cell Signaling Technology 3557 (7) [24]
thrombomodulin (CD141)Miltenyi Biotec 130-090-694 (10), BioLegend 344102 (10), Invitrogen MA5-11454 (7)
UEA-1 (Ulex europaeus I agglutinin)BD Biosciences 555693 (5), Santa Cruz Biotechnology sc-51733 (2), BioLegend 311308 (2)
vascular endothelial cadherin (VE-cadherin, CD144)Santa Cruz Biotechnology sc-9989 (36), Cell Signaling Technology 2500 (26), Invitrogen 14-1449-82 (9)
VEGF R1 (Flt-1)Abcam ab32152 (16), R&D Systems FAB4711P (5), Santa Cruz Biotechnology sc-271789 (3)
VEGF R2 (KDR/Flk-1)Cell Signaling Technology 2479 (82), Santa Cruz Biotechnology sc-6251 (30), BD Biosciences 560494 (4)
VEGFR3R&D Systems FAB3492P (6), BioLegend 356202 (4), Santa Cruz Biotechnology sc-28297 (1)
von Willebrand factorDako M0616 (17), Invitrogen MA5-14029 (13), Santa Cruz Biotechnology sc-365712 (5) [30]
Table 2. Major endothelial cell markers and their number of citations with antibody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Epithelial cells

Epithelial cells (EpC) originate from all embryonic germ layers (ectoderm, endoderm and mesoderm). Epidermal cells have ectodermal origin. Predominant epidermal cells are keratinocytes, which differentiate from epidermal stem cells. There are a large number of subtype-specific epithelial markers.

Keratines (K) are keratin-containing proteins detected in the cytoplasm of EpCs [31-33]. There are acidic type I and basic type II Ks. Keratins 1-3 are expressed by squamous EpCs. The expression of K5 and K6 are specific for mesothelial cells (also podoplanin [16] ) and K7 for ductal and glandular EpCs. K8 is expressed in EpCs of gastrointestinal tract (including stomach, colon, small intestine, gall bladder, liver, pancreas) and mammary gland ducts [34]. EpCs of skin, keratinocytes, express the following specific markers: keratins 1, 5, 10, 14, 15 and 16. K10 is expressed in suprabasal layer of squamous epithelia. K18 serves as a marker of proliferating malignant EpCs [35]. K Yoshida et al isolated bronchial epithelial cells through flow cytometry using EpCAM as a marker [36].

Protein Top three suppliers Reference
DCLK1 (for Tuft cells only)Santa Cruz Biotechnology sc-271390 (6), Abcam ab109029 (1) [37, 38]
E-cadherinCell Signaling Technology 3195 (328), BD Biosciences 610181 (311), Invitrogen 13-1700 (278) [39]
EpcamCell Signaling Technology 2929 (16), BioLegend 324202 (13), Invitrogen MA1-10195 (12) [40, 41]
epithelial membrane antigen (EMA, CD227, MUC-1)Invitrogen MA5-11202 (59), Dako M0613 (33), Novus Biologicals NB120-22711 (12)
epithelial sodium channel βSanta Cruz Biotechnology sc-25354 (4)
FcRBioLegend 303202 (10), BD Biosciences 557333 (8), Bio-Rad MCA1075 (6)
ICAM-1Santa Cruz Biotechnology sc-8439 (14), Abcam ab2213 (8), Invitrogen 14-0549-82 (8)
keratin 1Invitrogen MA1-82041 (104), BD Biosciences 349205 (20), Novus Biologicals NB100-2756 (10)
keratin 2Invitrogen MA1-82041 (104), Progen 61806 (2)
keratin 3Invitrogen MA1-82041 (104), Abcam ab77869 (5), Santa Cruz Biotechnology sc-80000 (3)
keratin 5Invitrogen MA1-82041 (104), Dako M7237 (40), MilliporeSigma C2562 (21)
keratin 6Invitrogen MA1-82041 (104), BD Biosciences 349205 (20), Abcam ab18586 (3)
keratin 7Invitrogen MA1-82041 (104), Dako M7018 (52), Abcam ab181598 (12)
keratin 8Invitrogen MA1-82041 (104), Developmental Studies Hybridoma Bank TROMA-I (59), MilliporeSigma C2562 (21) [35]
keratin 10Invitrogen MA1-82041 (104), MilliporeSigma C2562 (21), Santa Cruz Biotechnology sc-81714 (10)
keratin 14Invitrogen MA5-11599 (119), Abcam ab7800 (29), Santa Cruz Biotechnology sc-53253 (8)
keratin 15Invitrogen MA1-82041 (104), Dako M3515 (73), Abcam ab80522 (7)
keratin 16Invitrogen MA1-82041 (104), MilliporeSigma C2562 (21), Santa Cruz Biotechnology sc-53255 (3)
keratin 18Invitrogen MA1-82041 (104), Abcam ab668 (21), MilliporeSigma C2562 (21) [41, 42]
LFA-1Invitrogen MA1-19003 (7), BioLegend 301202 (5), BD Biosciences 555381 (5)
LFA-2Invitrogen 16-0029-85 (8), BD Biosciences 555324 (5), BioLegend 300202 (3)
PSA (prostate specific antigen)Santa Cruz Biotechnology sc-7316 (10), Cell Signaling Technology 5365 (5), Dako M0750 (3)
surfactant protein AAbcam AB51891 (4)
surfactant protein BInvitrogen MA5-13975 (5), Santa Cruz Biotechnology sc-133143 (2)
surfactant protein DAbcam AB17781 (5), Santa Cruz Biotechnology sc-59695 (2)
survivinCell Signaling Technology 2808 (54), Santa Cruz Biotechnology sc-17779 (33), Novus Biologicals NB500-238 (28)
VLA-1BD Biosciences 559594 (7), Invitrogen MA49A0 (2), Bio-Rad MCA1133F (2)
VLA-2Abcam ab133557 (5), Bio-Rad MCA2025 (4), BD Biosciences 555498 (3)
VLA-3Santa Cruz Biotechnology sc-374242 (3), BD Biosciences 556025 (3), Abcam ab8988 (2)
VLA-4BD Biosciences 555502 (11), BioLegend 304302 (7), Invitrogen 12-0499-42 (6)
VLA-5Abcam ab150361 (10), BD Biosciences 555617 (5), Santa Cruz Biotechnology sc-376199 (4)
VLA-6BD Biosciences 555734 (26), BioLegend 313602 (20), Abcam ab20142 (7)
Table 3. Major epithelial cell markers and their number of citations with antiobody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.

Other markers of EpCs include E-cadherin, epithelial membrane antigen (EMA, CD227, MUC-1) (expressed by most secretory EpCs), epithelial sodium channels α, β, γ, δ, prostate-specific antigen (PSA) (expressed by prostate EpCs), surfactant protein A-D (expressed by pulmonary epithelia, pro-surfactant protein C as a marker for type II alveolar epithelial cells [43] ), survivin (cells of epithelial carcinoma). Also, they express the receptors for the Fc part of the IgG (FcR), integrin molecules: VLA-1, 2, 3, 4, 5, 6, adhesion molecules LFA-1, LFA-2, ICAM-1 [1548035). The cells, forming the lining of the gastrointestinal tract, develop from endoderm. The lining of body cavities develops from mesoderm.

Tuft cells (also called brush cells) are a specialized type of epithelial cells able to use taste receptors and other surface proteins to detect pathogens. They are found in digestive and respiratory tracts. Both structural components (villin, fimbrin, α- or β-tubulin, Ac-tubulin, ankyrin, CK-18, neurofilaments, Dclk1) and taste cell-related proteins (α-gustducin, Trpm5, T1R1/T1R3) can serve as markers, in addition to Ptgs1, Ptgs2, H-Pgds, UEA1 lectin and Sox9 [44]. Wilen CB et al used DCLK1 and CK18 to identify Tuft cells in mouse ileum and colon [42]. Miller CN et al transcriptionally profiled a subset of thymic cells and found them to be similar to intestinal Tuft cells and confirmed the expression of KRT18/8 and DCLK1 among these thymic Tuft cells [37]. Nadjsombati MS et al used DCLK1 as a marker in the mouse small intestinal Tuft cells [38]. Lei W et al used DCLK1 staining as well to identify Tuft cells in mouse jejunum tissues [45].

Dendritic cells

Dendritic cells (DC) have the key role in adaptive immunity inducing antigen-specific immunity. Regarding both functions and localization, DCs can be classified into three subsets: conventional, plasmacytoid and dermal (skin located) DCs [46].

Conventional DCs reside in lymph nodes, spleen and thymus. In mice, conventional DCs can be divided into CD8+ (with phenotypes CD8+CD205+SIRPa-CD11b- in spleen and CD11chi MHCII+ CD8+ CD205+ in lymph nodes) and CD8- DCs [47]. These cells activate T cells toward Th1 and Th2 differentiation respectively.

Plasmacytoid DCs (pDC) belong to the second DC subset, which reside in lymph nodes, spleen, thymus and bone marrow. Human pDCs mature in the bone marrow and play specific role in anti-viral immunity by secreting anti-viral and pro-inflammatory cytokines including IFNs, TNFα, IL-6 and IL-12. These cells are composed of two subsets: CD2high and CD2low pDCs. Both human and murine pDCs express the following markers: B220/CD45R, CD11c [48], TLR7 and TLR9, IRF7, IRF8 [49] and BDCA2 [50].

The third subset of DCs is located in skin and develops from myeloid lineage. There are two distinct subgroups of the skin DCs: epidermal Langerhans cells (LCs) and dermal DCs. LCs are identified by the presence of Langerin-containing Birbeck granules and expression of the following markers: CD1a, CD45. In addition, among dermal DCs two subpopulations have been identified: CD103+ CD11blow Langerin+ and CD103- CD11bhi Langerin- DCs [51]. Dermal DCs also express CD14. Mature DCs also express CD1a, CD1b and CD1c molecules, which present lipid and glycolipid antigens to CD1/restricted T cells [52].

Several factors regulating differentiation of DCs have been identified. Human CD14+ monocytes differentiate into DCs when cultured with GMC-SF+ IL4 [53]. Also, human CD34+ cells can differentiate into DCs when cultured with GMC-SF + TNF [54]. Mouse bone marrow cells cultured with GMCSF+ TNF+ stem cell factor (SCF] can differentiate into DCs [55].

There are other DC markers which have different degree of specificity. CD83 is a specific marker of mature DCs [56]. CD21 and clusterin are markers of follicular DCs [57, 58]. In addition, DCs express: ADAM19 [59], CD86 [60], DC-LAMP (CD208] [61, 62], DC-SIGN (CD209) [63], DEC-205 [64], CLIP-170/restin [65], NLDC-145 [66]. MADDAM (metalloprotease and disintegrin dendritic antigen marker) is a marker of DC differentiation [67].

Protein Top three suppliers Reference
B220/CD45RBioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68)
CD1aBioLegend 300102 (12), Invitrogen MA5-12526 (12), BD Biosciences 555805 (11)
CD1bInvitrogen AHS0198 (5), BioLegend 329102 (3), BD Biosciences 555969 (3)
CD1cBioLegend 331501 (20), Miltenyi Biotec 130-090-695 (9), Invitrogen AHS0198 (5) [41]
CD11cBD Biosciences 550375 (39), BioLegend 301601 (17), Abcam ab1211 (15) [68]
CD14BD Biosciences 555396 (86), Invitrogen MHCD1400 (48), BioLegend 301802 (38)
CD21Invitrogen MA5-11417 (11), BD Biosciences 555421 (9), Dako M0784 (6)
CD45BioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68) [68]
CD83BD Biosciences 556854 (20), BioLegend 305302 (13), Invitrogen MHCD8304 (7)
CD86BioLegend 305402 (36), Invitrogen MA1-10293 (33), BD Biosciences 555656 (23)
CD123 / IL3RABD Biosciences 554527 (15), Invitrogen 14-1239-82 (11), BioLegend 306027 (11) [69]
CD208 / DC-LAMPNovus Biologicals ddx0191p-100 (2), Dentritics DDX0191 (2), BD Biosciences 558126 (2)
CD209 / DC-SIGNBD Biosciences 551186 (11), Invitrogen 14-2099-80 (5), BioLegend 330112 (2)
CD303 / BDCA2 / CLEC4CMiltenyi Biotec 130-090-690 (18), BioLegend 354215 (5), Invitrogen 25-9818-42 (2) [69]
CLIP-170 / restinSanta Cruz Biotechnology sc-28325 (1)
CLU / clusterinSanta Cruz Biotechnology sc-5289 (7), Sino Biological 11297-R210 (3), Abcam ab92548 (2)
CST3 / cystatin CAbcam ab109508 (5) [69]
DEC-205Invitrogen MA5-13365 (5), Santa Cruz Biotechnology sc-59158 (1), Bio-Rad MCA1651GA (1)
FCER1ABioLegend 134301 (20), Invitrogen MA1-4997 (6), Abcam ab54411 (2) [41, 69]
IL-6Abcam ab9324 (16), Invitrogen AHC0562 (11), Santa Cruz Biotechnology sc-28343 (5)
IL-12Invitrogen AHC9122 (4), Santa Cruz Biotechnology sc-74147 (1), Abcam ab131039 (1)
IRF7Santa Cruz Biotechnology sc-74472 (1), BioLegend 656008 (1), Cell Signaling Technology 13014 (1)
IRF8Cell Signaling Technology 5628 (5), Invitrogen 17-9852-82 (2), Santa Cruz Biotechnology sc-365042 (2)
TNFαBD Biosciences 559071 (44), Invitrogen 14-7349-85 (38), BioLegend 502902 (34)
TLR7Santa Cruz Biotechnology sc-57463 (2), Invitrogen MA5-16249 (2), R&D Systems IC5875P (2)
TLR9Novus Biologicals NBP2-24729 (24), Invitrogen 14-9099-82 (5), Santa Cruz Biotechnology sc-47723 (4)
Table 4. Major dendritic cell markers and their number of citations with antiobody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Glial cells

Glial cells are the cells located in the nervous system which provide protection and nutrition for the neurons, regulate migration of neurons in early development, communications between neurons and neurotransmitter release. The glial cell lineage includes microglia and macroglia. Microglia are extensively discussed in Labome's article Macrophage Markers.

Macroglia consists of astrocytes, oligodendrocytes, ependymal cells, radial glia, Schwann cells, satellite cells and enteric glial cells. Astrocytes are classified into type 1 astrocytes (Ran2+, GFAP+, FGFR3+, A2B5-) and type 2 astrocytes (A2B5+, GFAP+, FGFR3-, Ran 2-). There are two main groups of Schwann cells: myelinating (specific markers: proteins S-100, Myelin protein zero (P-Zero) and Myelin basic protein (MBP)) and non-myelinating (specific markers: S-100 and Glial fibrillary acidic protein (GFAP)). Precursors of oligodendrocytes express platelet-derived growth factor (PDGF) receptors, which bind PDGF [70]. Ependymal cells express S-100, vimentin, GFAP, BLBP, 3A7 and 3CB2 [71]. Schwann cells are the main glial cells of the peripheral nervous system. Specific markers for identification of Schwann cells are S-100, myelin basic protein (MBP) and myelin protein zero (MPZ). Satellite cells provide support for neurons in peripheral nervous system and express CD45 and markers of myeloid lineage CD14, CD68, and CD11b [72]. The specific markers for enteric glial cells include: S-100 protein, the neurofilament protein and the protein gene product 9.5 (PGP) [73]. Nott A et al isolated oligodendrocyte nuclei from human brain tissues through FANS with an antibody against OLIG2 and astrocyte nuclei with an antibody against LHX2 [74].

Protein Top three suppliers Reference
CD45BioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68)
CD68Invitrogen MA5-13324 (88), Dako M0876 (88), Abcam ab955 (46)
GFAPMilliporeSigma G3893 (234), Invitrogen 13-0300 (96), Cell Signaling Technology 3670 (66)
CD14BD Biosciences 555396 (86), Invitrogen MHCD1400 (48), BioLegend 301802 (38)
vimentinCell Signaling Technology 5741 (244), Invitrogen MA5-11883 (218), Abcam ab92547 (115)
CD11bInvitrogen MA1-10080 (226), BioLegend 101249 (109), Abcam ab133357 (42)
proteins S-100Invitrogen MA5-12969 (57), Abcam ab4066 (16), Biogenex MU058-5UC (3)
MBP / myelin basic proteinAbcam ab7349 (42), BioLegend 808401 (23), Santa Cruz Biotechnology sc-271524 (8)
platelet-derived growth factor (PDGF) receptorAbcam ab32570 (50), Cell Signaling Technology 3169 (44), BD Biosciences 558821 (9)
neurofilament proteinDako M0762 (35), BioLegend 837904 (24), Cell Signaling Technology 2837 (11)
MHC class IBioLegend 311402 (29), Invitrogen MA1-19027 (14), BD Biosciences 555552 (8)
protein gene product 9.5 (PGP)Cell Signaling Technology 13179 (8), Abcam ab8189 (7), Invitrogen 480012 (7)
FGFR3Santa Cruz Biotechnology sc-13121 (6), Cell Signaling Technology 4574 (5), Abcam ab155960 (2)
MHC class IISanta Cruz Biotechnology sc-65320 (1)
Myelin protein zero (P-Zero)Abcam ab183868 (1)
Table 5. Major glial cell markers and their number of citations with antiobody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Bone marrow cells

Bone marrow contains hematopoietic stem cells (HSC) which give raise to three main classes of blood cells: leukocytes, erythrocytes and thrombocytes. The main phenotype of human HSCs is: CD34+, CD38low/-, CD59+, Thy1+, c-Kit+, Lin-. Mouse HCSs can be identified as: CD34low/-, CD38+, Thy1+/low, SCA-1+, c-Kit+, Lin-. The other markers expressed by HSCs are: CD90, CD93, CD105, CD110, Ly-6A/E (Sca-1), CD111, CD135 (Flk-2), CD150 (SLAM), CD184 (CXCR4), CD202b, CD243 (MDR-1), CD271 (NFGR), CD309 (VEGFR2) and CD338 [75].

The main processes of differentiation in bone marrow include myelopoiesis, erythropoiesis and megakaryocyte lineage development. In the process of myelopoiesis the following cell types are generated: granulocytes, monocytes and mast cells. There are three different types of granulocytes generated in the bone marrow: eosinophils, basophils and neutrophils. Eosinophils differentiate from bone marrow in response to IL-3, IL-5 and GM-CSF [76-78]. Both mouse and human neutrophils express the following markers: Ly-6G [79, 80], CD11b [80], FcεRI, CD123, CD49b / DX-5, CD69, Thy-1.2, 2B4. Specific surface marker for monocytes is CD14 (CD14+ cells). ElTanbouly MA et al obtained mouse neutrophils as CD11b+ Ly6G+ Ly6C−, and monocytes as CD11b+ Ly6C+ Ly6G− [80]. Markers constantly expressed by bone marrow mast cells include: CD9, CD29, CD33, CD43, CD44, CD49d, CD49e, CD51, CD71, CD117, and Fc(epsilon)RI [81].

Protein Top three suppliers Reference
CD34Invitrogen MA1-10202 (162), Abcam ab81289 (43), BD Biosciences 555824 (26)
CD14BD Biosciences 555396 (86), Invitrogen MHCD1400 (48), BioLegend 301802 (38)
Ly-6A/E (Sca-1)Cell Signaling Technology 9664 (530), BD Biosciences 559565 (43), Novus Biologicals NB100-56708 (42)
CD44BioLegend 103002 (157), Invitrogen 14-0441-81 (128), BD Biosciences 550392 (34)
CD71Invitrogen 13-6800 (449), BD Biosciences 555534 (17), BioLegend 334102 (10)
CD11bInvitrogen MA1-10080 (226), BioLegend 101249 (109), Abcam ab133357 (42)
c-KitInvitrogen 14-1172-85 (19), BioLegend 313201 (19), Cell Signaling Technology 3074 (18)
CD117Invitrogen 14-1172-85 (19), BioLegend 313201 (19), Cell Signaling Technology 3074 (18)
CD29BD Biosciences 610467 (19), Abcam ab30394 (18), Cell Signaling Technology 9699 (16)
CD184 (CXCR4)BioLegend 306502 (16), Invitrogen 35-8800 (16), BD Biosciences 555971 (14)
CD38BioLegend 303502 (34), BD Biosciences 564498 (31), Invitrogen MA1-19316 (27)
Thy1BD Biosciences 555595 (30), BioLegend 328101 (13), Abcam ab92574 (13)
CD90BD Biosciences 555595 (30), BioLegend 328101 (13), Abcam ab92574 (13)
Thy-1.2BD Biosciences 555595 (30), BioLegend 328101 (13), Abcam ab92574 (13)
CD309 (VEGFR2)Cell Signaling Technology 2479 (82), Santa Cruz Biotechnology sc-6251 (30), BD Biosciences 560494 (4)
CD69BioLegend 310902 (34), BD Biosciences 560740 (31), Invitrogen MA1-207 (26)
CD271 (NFGR)Invitrogen MA5-13311 (15), BD Biosciences 557196 (10), Abcam ab52987 (8)
CD105Invitrogen MHCD10500 (14), BD Biosciences 555690 (10), Abcam ab11414 (8)
CD59Invitrogen MA1-19133 (14), Hycult Biotech HM2120 (3), Santa Cruz Biotechnology sc-133171 (2)
CD123BD Biosciences 554527 (15), Invitrogen 14-1239-82 (11), BioLegend 306027 (11)
CD33BD Biosciences 561157 (17), BioLegend 303419 (12), Beckman Coulter A54824 (7)
CD43BD Biosciences 555474 (10), Invitrogen MA5-16646 (2), Santa Cruz Biotechnology sc-51727 (2)
CD49eAbcam ab150361 (10), BD Biosciences 555617 (5), Santa Cruz Biotechnology sc-376199 (4)
CD202bCell Signaling Technology 4224 (9), Abcam ab24859 (4), R&D Systems MAB313 (2)
IL-5BioLegend 504302 (14), BD Biosciences 554391 (10), Invitrogen MA5-23690 (6)
CD243 (MDR-1)Santa Cruz Biotechnology sc-55510 (16), Abcam ab170904 (14), Invitrogen MA1-26528 (14)
CD338Abcam ab3380 (17), Enzo Life Sciences ALX-801-036-C250 (10), Santa Cruz Biotechnology sc-58222 (4)
FcεRIBioLegend 134301 (20), Invitrogen MA1-4997 (6), Abcam ab54411 (2)
CD49b (DX-5)Abcam ab133557 (5), Bio-Rad MCA2025 (4), BD Biosciences 555498 (3)
CD51Abcam ab179475 (12), BD Biosciences 611012 (5), Santa Cruz Biotechnology sc-376156 (4)
GM-CSFInvitrogen 14-1169-82 (2), BioLegend 305906 (2), Santa Cruz Biotechnology sc-21764 (1)
CD9Abcam ab92726 (36), Santa Cruz Biotechnology sc-13118 (15), Invitrogen AHS0902 (14)
CD150 (SLAM)BioLegend 306302 (7), BD Biosciences 559592 (2), Abcam ab2604 (1)
CD49dBD Biosciences 555502 (11), BioLegend 304302 (7), Invitrogen 12-0499-42 (6)
LinCell Signaling Technology 3695 (3), Santa Cruz Biotechnology sc-293120 (1), Invitrogen MA1-016 (1)
CD93BD Biosciences 551531 (2)
CD110BD Biosciences 562159 (2)
IL-3Invitrogen AHC0832 (1)
2B4BioLegend 329502 (11), Santa Cruz Biotechnology sc-136172 (6), Beckman Coulter IM1607 (4)
CD111Santa Cruz Biotechnology sc-21722 (5), Invitrogen 37-5900 (5), BioLegend 340404 (2)
CD135 (Flk-2)BD Biosciences 558996 (5), BioLegend 313302 (4), Cell Signaling Technology 3464 (2)
Table 6. Major bone marrow cell markers and their number of citations with antiobody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Natural killer cells

Natural Killer (NK) cells play the important role in immune response against malignant and infected cells. During NK lineage development, human NK cells pass through five main stages of differentiation. During these five stages NK cells express distinct sets of markers: 1) CD34+ CD45RA+ CD117− CD161− CD94−; 2) CD34+ CD45RA+ CD117+ CD161+/− CD94−; 3) CD34− CD117+ CD161+ NKp46− CD94−; 4) CD34− CD117+/− NKp46+ CD94+ CD16− CD56bright; 5) CD34− CD117− NKp46+ CD94+/− CD16+ CD56dim [82]. There are two major populations of human blood NK cells which are defined on the basis of the surface expression intensity of CD56 [83, 84] and the low-affinity Fc receptor CD16 [85]. A larger population of CD56dim NK cells (∼90%) expresses high levels of CD16, whereas a minor subset of CD56bright NK cells expresses limited CD16.

In contrast to human NK cells, murine NK cellular subsets can be distinguished from each other by the expression of CD27 and CD11b markers. These subsets include immature CD11b- NK cells, CD27+ NK cells and mature (terminal) CD27-CD11b+ NK cells. NK cells can be activated by several interleukins: IL-12, IL-2, IL-15, IL-18. Also, NK cells express receptors for CXC, CC and C chemokines, which are important for the regulation of NK functions [86]. In addition, NK cells express receptors recognizing MHC class I molecules (human KIRs, the rodent Ly49 and CD94/NKG2), NKp46, FcgRII and non-MHC-binding NK receptors (NKR-P1 (CD161)) [87], natural cytotoxicity receptors (NCR) and 2B4) [88], NKG2A and NKp80 [89], CD107a - a functional marker NK cell activity [90], CD69 - NK cell activation marker [87], CD335/NKp46 [91], BAT [92], CD57/HNK1 [93], NKH1 (N901) [94], DPIV (dipeptidyl peptidase IV) - a surface marker of NK cells [95], H25 [96].

Protein Top three suppliers Reference
2B4BioLegend 329502 (11), Santa Cruz Biotechnology sc-136172 (6), Beckman Coulter IM1607 (4)
CD11bInvitrogen MA1-10080 (226), BioLegend 101249 (109), Abcam ab133357 (42)
CD16BD Biosciences 550383 (85), Invitrogen MA1-10112 (35), BioLegend 302002 (20)
CD27BioLegend 302839 (36), BD Biosciences 561408 (36), Invitrogen 14-0271-82 (32)
CD34Invitrogen MA1-10202 (162), Abcam ab81289 (43), BD Biosciences 555824 (26)
CD45RABioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68)
CD56 / NCAM1BioLegend 318302 (56), BD Biosciences 564488 (54), Invitrogen MA1-06801 (26) [41, 69]
CD57 / HNK1Invitrogen MA5-12008 (21), BD Biosciences 559048 (7), BioLegend 359602 (6)
CD69BioLegend 310902 (34), BD Biosciences 560740 (31), Invitrogen MA1-207 (26)
CD94 / NKG2BD Biosciences 555887 (13), BioLegend 305504 (5), Invitrogen 11-0949-42 (1)
CD107aBD Biosciences 555798 (58), Developmental Studies Hybridoma Bank H4A3 (56), Cell Signaling Technology 9091 (54)
CD117Invitrogen 14-1172-85 (19), BioLegend 313201 (19), Cell Signaling Technology 3074 (18)
CD128 / CD181 / CXCR1BD Biosciences 551080 (3), Santa Cruz Biotechnology sc-7303 (2), Invitrogen 14-1819-82 (2)
CD161 / KLRB1 / NK1.1BioLegend 339902 (18), BD Biosciences 556079 (11), Miltenyi Biotec 130-092-676 (8) [69, 97]
CD191 / CCR1BioLegend 362903 (1), R&D Systems MAB5986 (1), BD Biosciences 557914 (1)
CD335 / NKp46 / LY94 / NCR1BioLegend 331902 (14), Beckman Coulter A66902 (7), BD Biosciences 557911 (6)
DPIV (dipeptidyl peptidase IV)BioLegend 302702 (4), BD Biosciences 555435 (3), Invitrogen MA1-35147 (2)
FcgRIIBioLegend 303202 (10), BD Biosciences 557333 (8), Bio-Rad MCA1075 (6)
GNLY / granulysin / NKG5 / LAG2BioLegend 348008 (6), BD Biosciences 558254 (1) [69]
IL-2BioLegend 500301 (17), BD Biosciences 554562 (16), Invitrogen 14-7029-81 (9)
IL-12Invitrogen AHC9122 (4), Santa Cruz Biotechnology sc-74147 (1), Abcam ab131039 (1)
IL-15Santa Cruz Biotechnology sc-8437 (1)
IL-18Abcam ab207324 (1), MBL International D044-3 (1)
KIRBioLegend 312712 (8), Miltenyi Biotec 130-104-483 (1), Beckman Coulter A60795 (1)
NKG2ABeckman Coulter IM2750 (33), R&D Systems MAB1059-100 (1), Miltenyi Biotec 130-114-092 (1)
NKp80BioLegend 346708 (1), Miltenyi Biotec 130-094-843 (1)
Table 7. Major natural killer cell markers and their number of citations with antiobody applications of immunohistochemistry, immunocytochemistry, flow cytometry, and ELISA, among the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
Other cell types

The following discusses markers for less commonly studied cell types.

Choroid plexus markers

L Pellegrini et al used TTR / transthyretin, CLIC6 and HTR2C as markers for choroid plexus [98].

Cardiomyocyte markers

Pericentriolar material 1 (PCM1) and cTroponins I and T can be used to label cardiomyocyte nuclei [99, 100]. Connexin 43 (cx43) is also a good marker for cardiomyocytes [101]. Wheat germ agglutinin lectin can label cardiomyocyte fibrosis [99, 102]. MF20 from DSHB, an antibody against sarcomeric isoforms of myosin heavy chain, can stain cardiomyocyte differentiation [103].

Enterocytes

Enterocytes, or intestinal absorptive cells, are a type of epithelial cells response for the absorption of water, ions, and other nutrients in the small intestines. AldolaseB is commonly used as their marker [104].

Fibroblasts

T Yokota et al labeled fibroblasts with vimentin [105]. H Qian et al, on the other hand, used fibronectin as a marker for fibroblasts [106].

Germ cells

Germ cells include specific cell types involved in reproduction. They include gametes (the sperm and eggs) and gonocytes regulating the production of gametes. The specific markers of germ cells include 4C9 [107], GCNA1 (germ cell nuclear antigen 1, GCNA-1) [108, 109], DAZ-like 1(DAZL1) [110], VASA [111], ZAR1 (zygotic arrest 1) [108], TEX101 [112]. In addition, RBM (RNA-binding motif) [113] and tesmin [114].

Granulosa cells

Granulosa cells form a barrier around ovarian oocyte follicles. As the follicles mature, the granulosa cells multiply to form many layers around the oocyte. Granulosa cells produce estradiol before ovulation and secrete progesterone after ovulation. The main markers of granulose cells are AMH (anti-mullerian hormone) [115], Follicle regulatory protein (FRP) [116], inhibin [117, 118], MCAM (Melanoma cell adhesion molecule, CD146) [119], fibronectin [120].

Hepatocytes

Hepatocytes are the parenchymal cells of liver. Aizarani N et al used HP and ASGR1 as markers for hepatocytes to build a human liver atlas using single-cell RNA-seq [21].

Jurkat cells

Jurkat cells are the cells of CD4+ T cell leukemia line. These cells express specific markers of T cells including CD3, CD4, CD45 [121] and produce interleukin-2 (IL-2). In addition, Jurkat cells express chemokine receptors CCR1-10 and CXCR4.

Large luteal cells

Large luteal cells are located in the corpus luteum and produce progesterone and oxytocin. They are derived from granulose cells. Markers of large luteal cells include CYP11A1 [122], luteinizing hormone receptor [123], phosphorylated Akt [124].

Mast cells

Mast cells are granulated cells of hematopoietic origin found in most tissues. Mast cells contain large amount of granules rich in histamine and heparin and play an important role in allergy and anaphylaxis. Specific markers of mast cells are tryptase [125], high affinity IgE receptor [126], CD25 [126], CD45 [127], CD23 [126], CD117 (c-Kit) [41, 127] and CD203c [126].

Neuroendocrine cells

Neuroendocrine cells are activated by neurotransmitters and release hormones. Ouadah Y et al used CGRP as a marker for pulmonary neuroendocrine cell marker [128].

Paneth cells

Paneth cells are one of the main cell type of the small intestine epithelium. They are part of the immune defence system, since they synthesize and secrete antimicrobial peptides and proteins and lysozyem. Lysozyme is commonly used as their marker [104].

Pericytes

Pericytes, located around the capillaries and venules, help maintain homeostatic and hemostatic functions. F Binet et al labeled mouse retinal vascular pericytes with NG2 [25]. Nortley R et al labeled pericytes with antibodies against platelet-derived growth factor receptor beta and NG2/CSPG4, and outlined the pericyte basement membrane with fluorescently-tagged isolectin B4 [129].

Purkinje cells

Purkinje cells are a subtype of neuronal cells located in cerebellar cortex. Specific markers of Purkinje cells include cGMP-dependent protein kinase [130], guanosine 3':5'-phosphate-dependent protein kinase [131], zebrin I and zebrin II - Purkinje cell-specific markers [132-134], Car8 [135], HFB-16 (KIAA0864 Protein) [136], inositol 1, 4, 5-triphosphate receptors (IP3R) [137-139].

Pyramidal cells

Pyramidal cells are neurons located in several different regions of central nervous system such as cerebral cortex, hippocampus and amygdala. They are suggested to play an important role in cognitive functions. Specific markers of pyramidal cells include CaMK (calcium/calmodulin-dependent protein kinase II, CaMKII) [140], neurogranin/RC3 [141, 142], SMI-32 [143-145], MATH-2 [146], SCIP [146, 147], Emx1 [148].

Retinal ganglion cells

Retinal ganglion cells are the output neurons in retina. Ganglion cells acquire information about the visual world and transfer it through optical nerve to brain visual centers. Specific markers of retinal ganglion cells include RBPMS [149], NGF, NSCL2 [150], PKC, Hu, and Brn3b [151].

Schwann cells

Glial cells are the cells located in the nervous system which provide protection and nutrition for the neurons, regulate migration of neurons in early development, communications between neurons and neurotransmitter release. Schwann cells are the main glial cells of the peripheral nervous system. Schwann cells wrap themselves around neurve axons. In addition, Schwann cells play an important role in removing debris and in the regrowth of nerve axons. Specific markers for identification of Schwann cells are S-100 [152], myelin basic protein (MBP) [153] and myelin protein zero (MPZ).

Sertoli cells

Sertoli cell have an important role in the mechanisms of spermatogenesis. In addition, Sertoli cell control the transport of hormones into the seminiferous tubules. Specific markers of Sertoli cells include ABP (androgen-binding protein) [154], Dhh (Desert hedgehog) [155], GATA-1 [156].

Small muscle cells

Y Shwartz et al labelled the arrector pili muscle with integrin alpha 8 or smooth muscle actin [157]. H Hu et al stained smooth muscle cells in human mature arteriovenous fistulae with the Abcam antibody against alpha actin ( ab5694) [30].

Cell typeProteinDetail Top three suppliers
Cardiomyocytes PCM1cardiomyocyte nucleus [158] Abcam ab154142 (3), Santa Cruz Biotechnology sc-398365 (2), Atlas Antibodies AMAb90565 (1)
TNNT2 cardiac troponin Tcardiomyocytes [99] Invitrogen MA5-12960 (156), Abcam ab8295 (29), Developmental Studies Hybridoma Bank CT3 (10)
Enterocytes aldolase BcytoplasmicAbcam ab75751 (2)
Fibroblasts fibronectin [106] BD Biosciences 610077 (45), Abcam ab6328 (20), Invitrogen MA5-11981 (19)
vimentinheart [105], blood vessels [159] Cell Signaling Technology 5741 (244), Invitrogen MA5-11883 (218), Abcam ab92547 (115)
Germ cells AP-2gammagonocytes and seminomatous germ cell tumors [160, 161] Santa Cruz Biotechnology sc-12762 (2), Abcam ab110635 (1)
DAZ-like 1/DAZL1male and female gonads [110] Bio-Rad MCA2336 (7), LifeSpan Biosciences LS-C188293 (1)
EGFRsyncytiotrophoblastic cells in testicular germ cell tumors [162] Cell Signaling Technology 4267 (119), Invitrogen MA1-12693 (45), Abcam ab52894 (35)
MAGE-A4testicular tumors [163] Santa Cruz Biotechnology sc-20034 (2)
OCT3/4germ cell tumors, such as gonadoblastoma and carcinoma in situ, invasive embryonal carcinoma and seminomatous tumors [164] Santa Cruz Biotechnology sc-5279 (259), Cell Signaling Technology 2840 (35), BD Biosciences 611203 (14)
VASAboth normal and malignant human germ cells [111] Abcam ab27591 (10), Cell Signaling Technology 8761 (4)
Granulosa cells AMH/anti-mullerian hormonea marker of sertoli- and granulosa-cell origin in gonadal tumors [115] Bio-Rad MCA2246 (2), Santa Cruz Biotechnology sc-166752 (2), Abcam ab24542 (1)
chZPCa specific granulosa marker in the chicken [165] Abcam ab171968 (1)
fibronectina marker of granulosa cell cytodifferentiation [120] BD Biosciences 610077 (45), Abcam ab6328 (20), Invitrogen MA5-11981 (19)
MCAM/melanoma cell adhesion molecule/CD146 [119] BD Biosciences 550315 (8), Santa Cruz Biotechnology sc-18837 (5), Abcam ab75769 (5)
Hepatocytes ASGR1BD Biosciences 563654 (3), Santa Cruz Biotechnology sc-52623 (1), Invitrogen MA1-40244 (1)
HP/haptoglobinAbcam ab13429 (2), Santa Cruz Biotechnology sc-365396 (1), Abfrontier LF-MA0158 (1)
Jurkat cells CD3/CD3Ecell surface [121] Invitrogen MA1-90582 (291), BD Biosciences 339186 (94), BioLegend 300402 (42)
CD45cell surface [121] BioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68)
IL-2secretedBioLegend 500301 (17), BD Biosciences 554562 (16), Invitrogen 14-7029-81 (9)
Luteal cells, large

luteinizing hormone receptor

[123] Santa Cruz Biotechnology sc-293165 (1)
phosphorylated Akt [124] Cell Signaling Technology 4060 (981), Santa Cruz Biotechnology sc-5298 (45), Abcam ab81283 (25)
Mast cells CD23cell surface [126] Invitrogen MA5-14572 (11), Leica Biosystems NCL-CD23-1B12 (4), BD Biosciences 550386 (3)
CD25cell surface [126] BD Biosciences 560356 (65), BioLegend 302602 (40), Invitrogen 14-0259-82 (18)
CD45cell surface [127] BioLegend 103202 (149), Invitrogen 14-0452-86 (137), BD Biosciences 560777 (68)
CD117/c-Kitcell surface [126] Invitrogen 14-1172-85 (19), BioLegend 313201 (19), Cell Signaling Technology 3074 (18)
CD203ccell surface [126] Bio-Rad MCA1973F (2), BioLegend 324606 (1), Invitrogen MA1-10139 (1)
High affinity IgE receptorcell surface [126] BioLegend 134301 (20), Invitrogen MA1-4997 (6), Abcam ab54411 (2)
Purkinje cells calbindincerebellar Purkinje cells [166] MilliporeSigma C9848 (132), SWant 300 (84), Abcam ab82812 (9)
Car8high levels in cerebellar Purkinje cells [135] Santa Cruz Biotechnology sc-166626 (1)
cerebellinquantifiable marker for Purkinje Cell maturation [167, 168] Abcam ab181379 (1)
cGMP-dependent protein kinase [130] Cell Signaling Technology 3248 (3)
clusterinischaemic Purkinje cells in human brain [169] Santa Cruz Biotechnology sc-5289 (7), Sino Biological 11297-R210 (3), Abcam ab92548 (2)
GAD67/67-kDa isoform of glutamic acid decarboxylasePurkinje cell differentiation marker [170] Abcam ab26116 (16), MilliporeSigma G5419 (3), Cell Signaling Technology 63080 (2)
HDAC6expressed by most neurons but is abundant in cerebellar Purkinje cells [171] Cell Signaling Technology 7558 (9), Santa Cruz Biotechnology sc-28386 (3), Abcam ab253033 (1)
Inositol 1, 4, 5-triphosphate receptors/IP3R [137-139] Cell Signaling Technology 8568 (3), Santa Cruz Biotechnology sc-377518 (1), Abcam ab108517 (1)
NMDA-NR1/NMDA-R1 receptor subtypeadult cerebellar Purkinje cell [172] Invitrogen 32-0500 (18), Cell Signaling Technology 5704 (9), Synaptic Systems 114 011 (7)
PCA-1/PCA-2cytoplasm of Purkinje cells [173, 174, 174, 175] Santa Cruz Biotechnology sc-166649 (1)
PMCA/plasma membrane calcium pumpmore distal dendrites of the Purkinje cells [176] Invitrogen MA3-914 (58), Santa Cruz Biotechnology sc-20028 (4), LifeSpan Biosciences LS-C87407 (1)
PMCA2/plasma membrane Ca(2+)-transport ATPase-2 [177, 178] Invitrogen MA3-914 (58)
SERCA [179] Abnova H00000489-M01 (1)
Paneth cells lysozymecytoplasmicAbcam ab108508 (6), Invitrogen GIC207 (1)
Pyramidal cells CaMK2 alpha [140] Invitrogen MA1-047 (45), Abcam ab22609 (16), Cell Signaling Technology 12716 (14)
MAP2pyramidal cell dendrites [180-182] MilliporeSigma M4403 (94), Invitrogen MA5-12823 (23), Abcam ab11267 (23)
mGluR5major postsynaptic mGluR expressed in CA1 pyramidal neurons [183, 184] Abcam ab76316 (5)
PSD-95dendrites of pyramidal neurons [186] Invitrogen MA1-045 (209), Neuromab 75-028 (93), Cell Signaling Technology 3450 (40)
SCIPhippocampal pyramidal cell marker [146, 147] Abcam ab126746 (3)
SMI-32/CD3epsilon [143-145] Invitrogen MA1-90582 (291), BD Biosciences 339186 (94), BioLegend 300402 (42)
Retinal ganglion cells NSCL2Santa Cruz Biotechnology sc-735 (4)
PKC alphaSanta Cruz Biotechnology sc-8393 (21), Abcam ab32376 (13), Novus Biologicals NB600-201 (13)
POU4F1 / BRN3ASanta Cruz Biotechnology sc-31984 (23), Abcam ab81213 (2)
RBPMSSanta Cruz Biotechnology sc-293285 (1)
Schwann cells glial fibrillary acidic protein/GFAPnon-myelinating Schwann cellsMilliporeSigma G3893 (234), Invitrogen 13-0300 (96), Cell Signaling Technology 3670 (66)
myelin basic protein/MBPmyelinating Schwann cellsAbcam ab7349 (42), BioLegend 808401 (23), Santa Cruz Biotechnology sc-271524 (8)
S100A1Invitrogen MA5-12969 (57), Abcam ab4066 (16), Biogenex MU058-5UC (3)
Sertoli cells ABP/androgen-binding proteina functional marker of Sertoli cells [154, 187, 188] Santa Cruz Biotechnology sc-377031 (1)
calretininimmature Sertoli cells [189] SWant 6B3 (45), Invitrogen MA1-39562 (9), BD Biosciences 610908 (8)
clusterinrat Sertoli cells [190, 191] Santa Cruz Biotechnology sc-5289 (7), Sino Biological 11297-R210 (3), Abcam ab92548 (2)
cytokeratin 18Sertoli cells in prenatal and prebubertal periods [189, 192, 193] Invitrogen MA1-82041 (104), Abcam ab668 (21), MilliporeSigma C2562 (21)
GATA-1Sertoli cells at specific seminiferous tubule stages [156] Santa Cruz Biotechnology sc-265 (13), Cell Signaling Technology 3535 (1)
GATA-4fetal Sertoli cells in the seminiferous cords [194-198] Santa Cruz Biotechnology sc-25310 (36), Invitrogen 14-9980-80 (2)
MIS/mMullerian inhibiting substancefetal Sertoli cells [199] Bio-Rad MCA2246 (2), Santa Cruz Biotechnology sc-166752 (2), Abcam ab24542 (1)
SCF/stem cell factorproduced by Sertoli cells [200-204] Abcam ab52603 (5), Santa Cruz Biotechnology sc-13126 (1)
Sox9regulates the differentiation of Sertoli cells in the testis [207-210] Abcam ab185966 (15), Santa Cruz Biotechnology sc-166505 (3), Abnova H00006662-M04 (1)
vimentinmature Sertoli cells [211, 212] Cell Signaling Technology 5741 (244), Invitrogen MA5-11883 (218), Abcam ab92547 (115)
Table 8. Antibody markers for different cell types and the top three suppliers cited in the 60,000 publications Labome has surveyed for Validated Antibody Database. The most cited monoclonal antibody from each supplier is listed.
References
  1. Rosen E, Walkey C, Puigserver P, Spiegelman B. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293-307 pubmed
  2. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252-63 pubmed publisher
  3. Cox N, Crozet L, Holtman I, Loyher P, Lazarov T, White J, et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science. 2021;373: pubmed publisher
  4. Walden T, Hansen I, Timmons J, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302:E19-31 pubmed publisher
  5. Petrovic N, Walden T, Shabalina I, Timmons J, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adi. J Biol Chem. 2010;285:7153-64 pubmed publisher
  6. Wu J, Boström P, Sparks L, Ye L, Choi J, Giang A, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366-76 pubmed publisher
  7. Sharp L, Shinoda K, Ohno H, Scheel D, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012;7:e49452 pubmed publisher
  8. Lidell M, Betz M, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19:631-4 pubmed publisher
  9. Ussar S, Lee K, Dankel S, Boucher J, Haering M, Kleinridders A, et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med. 2014;6:247ra103 pubmed publisher
  10. Flaherty S, Grijalva A, Xu X, Ables E, Nomani A, Ferrante A. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science. 2019;363:989-993 pubmed publisher
  11. Middleton J, Americh L, Gayon R, Julien D, Mansat M, Mansat P, et al. A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol. 2005;206:260-8 pubmed
  12. Harris E, Nelson W. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol. 2010;22:651-8 pubmed publisher
  13. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006;368:33-47 pubmed
  14. Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood. 2009;114:478-84 pubmed publisher
  15. Gur Cohen S, Yang H, Baksh S, Miao Y, Levorse J, Kataru R, et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science. 2019;366:1218-1225 pubmed publisher
  16. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed publisher
  17. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed publisher
  18. Dá Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison R, Kingsmore K, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185-191 pubmed publisher
  19. Absinta M, Ha S, Nair G, Sati P, Luciano N, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. elife. 2017;6: pubmed publisher
  20. Gifford C, Ranade S, Samarakoon R, Salunga H, de Soysa T, Huang Y, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science. 2019;364:865-870 pubmed publisher
  21. Aizarani N, Saviano A, Sagar -, Mailly L, Durand S, Herman J, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199-204 pubmed publisher
  22. Correa Gallegos D, Jiang D, Christ S, Ramesh P, Ye H, Wannemacher J, et al. Patch repair of deep wounds by mobilized fascia. Nature. 2019;576:287-292 pubmed publisher
  23. Han E, Wang J, Kural M, Jiang B, Leiby K, Chowdhury N, et al. Development of a Bioartificial Vascular Pancreas. J Tissue Eng. 2021;12:20417314211027714 pubmed publisher
  24. Zrzavy T, Hoftberger R, Berger T, Rauschka H, Butovsky O, Weiner H, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol. 2019;45:278-290 pubmed publisher
  25. Binet F, Cagnone G, Crespo Garcia S, Hata M, Neault M, Dejda A, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science. 2020;369: pubmed publisher
  26. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed publisher
  27. Lehle K, Straub R, Morawietz H, Kunz Schughart L. Relevance of disease- and organ-specific endothelial cells for in vitro research. Cell Biol Int. 2010;34:1231-8 pubmed publisher
  28. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:6020 pubmed publisher
  29. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier K, Berndt M, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2020;40:263-275 pubmed publisher
  30. Hu H, Lee S, Bai H, Guo J, Hashimoto T, Isaji T, et al. TGFβ (Transforming Growth Factor-Beta)-Activated Kinase 1 Regulates Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol. 2020;40:e203-e213 pubmed publisher
  31. Sun T, Eichner R, Nelson W, Tseng S, Weiss R, Jarvinen M, et al. Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol. 1983;81:109s-15s pubmed
  32. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129:705-33 pubmed publisher
  33. Chandrashekar A, Liu J, Martinot A, McMahan K, Mercado N, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;: pubmed publisher
  34. Strnad P, Paschke S, Jang K, Ku N. Keratins: markers and modulators of liver disease. Curr Opin Gastroenterol. 2012;28:209-16 pubmed publisher
  35. Weng Y, Cui Y, Fang J. Biological functions of cytokeratin 18 in cancer. Mol Cancer Res. 2012;10:485-93 pubmed publisher
  36. Yoshida K, Gowers K, Lee Six H, Chandrasekharan D, Coorens T, Maughan E, et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 2020;578:266-272 pubmed publisher
  37. Miller C, Proekt I, von Moltke J, Wells K, Rajpurkar A, Wang H, et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature. 2018;559:627-631 pubmed publisher
  38. Nadjsombati M, McGinty J, Lyons Cohen M, Jaffe J, DiPeso L, Schneider C, et al. Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity. 2018;49:33-41.e7 pubmed publisher
  39. Wang W, Hu C, Zeng A, Alegre D, Hu D, Gotting K, et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science. 2020;369: pubmed publisher
  40. Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs S, Leshem A, et al. Diet Diurnally Regulates Small Intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis. Cell. 2020;: pubmed publisher
  41. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed publisher
  42. Wilen C, Lee S, Hsieh L, Orchard R, Desai C, Hykes B, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360:204-208 pubmed publisher
  43. Jamsai D, Watkins D, O Connor A, Merriner D, Gursoy S, Bird A, et al. In vivo evidence that RBM5 is a tumour suppressor in the lung. Sci Rep. 2017;7:16323 pubmed publisher
  44. Gerbe F, Legraverend C, Jay P. The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci. 2012;69:2907-17 pubmed publisher
  45. Lei W, Ren W, Ohmoto M, Urban J, Matsumoto I, Margolskee R, et al. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc Natl Acad Sci U S A. 2018;115:5552-5557 pubmed publisher
  46. Takeuchi S, Furue M. Dendritic cells: ontogeny. Allergol Int. 2007;56:215-23 pubmed
  47. Shortman K, Liu Y. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151-61 pubmed
  48. Amano H, Amano E, Santiago Raber M, Moll T, Martinez Soria E, Fossati Jimack L, et al. Selective expansion of a monocyte subset expressing the CD11c dendritic cell marker in the Yaa model of systemic lupus erythematosus. Arthritis Rheum. 2005;52:2790-8 pubmed
  49. Colonna M, Trinchieri G, Liu Y. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219-26 pubmed
  50. Conrad C, Gregorio J, Wang Y, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res. 2012;72:5240-9 pubmed publisher
  51. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8:935-47 pubmed publisher
  52. Moody D, Zajonc D, Wilson I. Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol. 2005;5:387-99 pubmed
  53. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109-18 pubmed
  54. Caux C, Vanbervliet B, Massacrier C, Dezutter Dambuyant C, de Saint Vis B, Jacquet C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med. 1996;184:695-706 pubmed
  55. Zhang Y, Harada A, Wang J, Zhang Y, Hashimoto S, Naito M, et al. Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood. 1998;92:118-28 pubmed
  56. Mahanonda R, Sa Ard Iam N, Yongvanitchit K, Wisetchang M, Ishikawa I, Nagasawa T, et al. Upregulation of co-stimulatory molecule expression and dendritic cell marker (CD83) on B cells in periodontal disease. J Periodontal Res. 2002;37:177-83 pubmed
  57. Troxell M, Schwartz E, van de Rijn M, Ross D, Warnke R, Higgins J, et al. Follicular dendritic cell immunohistochemical markers in angioimmunoblastic T-cell lymphoma. Appl Immunohistochem Mol Morphol. 2005;13:297-303 pubmed
  58. Grogg K, Lae M, Kurtin P, Macon W. Clusterin expression distinguishes follicular dendritic cell tumors from other dendritic cell neoplasms: report of a novel follicular dendritic cell marker and clinicopathologic data on 12 additional follicular dendritic cell tumors and 6 additional . Am J Surg Pathol. 2004;28:988-98 pubmed
  59. Ehrnsperger A, Rehli M, Thu Hang P, Kreutz M. Epigenetic regulation of the dendritic cell-marker gene ADAM19. Biochem Biophys Res Commun. 2005;332:456-64 pubmed
  60. Bonnefont Rebeix C, de Carvalho C, Bernaud J, Chabanne L, Marchal T, Rigal D. CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol. 2006;109:167-76 pubmed
  61. Salaun B, de Saint Vis B, Clair Moninot V, Pin J, Barthélemy Dubois C, Kissenpfennig A, et al. Cloning and characterization of the mouse homologue of the human dendritic cell maturation marker CD208/DC-LAMP. Eur J Immunol. 2003;33:2619-29 pubmed
  62. Meyerholz D, DeGraaff J, Gallup J, Olivier A, Ackermann M. Depletion of alveolar glycogen corresponds with immunohistochemical development of CD208 antigen expression in perinatal lamb lung. J Histochem Cytochem. 2006;54:1247-53 pubmed
  63. Schlapbach C, Ochsenbein A, Kaelin U, Hassan A, Hunger R, Yawalkar N. High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;62:995-1004 pubmed publisher
  64. Kronin V, Wu L, Gong S, Nussenzweig M, Shortman K. DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses. Int Immunol. 2000;12:731-5 pubmed
  65. Sahin U, Neumann F, Tureci O, Schmits R, Perez F, Pfreundschuh M. Hodgkin and Reed-Sternberg cell-associated autoantigen CLIP-170/restin is a marker for dendritic cells and is involved in the trafficking of macropinosomes to the cytoskeleton, supporting a function-based concept of Hodgkin and Reed-Sternberg cells. Blood. 2002;100:4139-45 pubmed
  66. Breel M, Laman J, Kraal G. Murine hybrid cell lines expressing the NLDC-145 dendritic cell determinant. Immunobiology. 1988;178:167-76 pubmed
  67. Fritsche J, Moser M, Faust S, Peuker A, Buttner R, Andreesen R, et al. Molecular cloning and characterization of a human metalloprotease disintegrin--a novel marker for dendritic cell differentiation. Blood. 2000;96:732-9 pubmed
  68. Bessman N, Mathieu J, Renassia C, Zhou L, Fung T, Fernandez K, et al. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science. 2020;368:186-189 pubmed publisher
  69. Chi Y, Remšík J, Kiseliovas V, Derderian C, Sener U, Alghader M, et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science. 2020;369:276-282 pubmed publisher
  70. Grinspan J. Cells and signaling in oligodendrocyte development. J Neuropathol Exp Neurol. 2002;61:297-306 pubmed
  71. Perez Martin M, Cifuentes M, Grondona J, Bermudez Silva F, Arrabal P, Pérez Fígares J, et al. Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor. Eur J Neurosci. 2003;17:205-11 pubmed
  72. van Velzen M, Laman J, Kleinjan A, Poot A, Osterhaus A, Verjans G. Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol. 2009;183:2456-61 pubmed publisher
  73. Krammer H, Karahan S, Sigge W, Kuhnel W. Immunohistochemistry of markers of the enteric nervous system in whole-mount preparations of the human colon. Eur J Pediatr Surg. 1994;4:274-8 pubmed
  74. Nott A, Holtman I, Coufal N, Schlachetzki J, Yu M, Hu R, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science. 2019;366:1134-1139 pubmed publisher
  75. Calloni R, Cordero E, Henriques J, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev. 2013;22:1455-76 pubmed publisher
  76. Metcalf D, Begley C, Nicola N, Johnson G. Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo to recombinant multi-CSF (IL-3). Exp Hematol. 1987;15:288-95 pubmed
  77. Metcalf D, Burgess A, Johnson G, Nicola N, Nice E, Delamarter J, et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J Cell Physiol. 1986;128:421-31 pubmed
  78. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med. 1988;167:43-56 pubmed
  79. Rowe S, Wagner N, Li L, Beam J, Wilkinson A, Radlinski L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 2020;5:282-290 pubmed publisher
  80. ElTanbouly M, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science. 2020;367: pubmed publisher
  81. Escribano L, Orfao A, Villarrubia J, Diaz Agustin B, Cerveró C, Rios A, et al. Immunophenotypic characterization of human bone marrow mast cells. A flow cytometric study of normal and pathological bone marrow samples. Anal Cell Pathol. 1998;16:151-9 pubmed
  82. Freud A, Caligiuri M. Human natural killer cell development. Immunol Rev. 2006;214:56-72 pubmed
  83. Sekita T, Tamaru J, Isobe K, Harigaya K, Masuoka S, Katayama T, et al. Diffuse large B cell lymphoma expressing the natural killer cell marker CD56. Pathol Int. 1999;49:752-8 pubmed
  84. Chan J, Sin V, Wong K, Ng C, Tsang W, Chan C, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89:4501-13 pubmed
  85. Tao Y, Mis M, Blazer L, Ustav M, Steinhart Z, Chidiac R, et al. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. elife. 2019;8: pubmed publisher
  86. Bernardini G, Gismondi A, Santoni A. Chemokines and NK cells: regulators of development, trafficking and functions. Immunol Lett. 2012;145:39-46 pubmed publisher
  87. Coulam C, Roussev R. Correlation of NK cell activation and inhibition markers with NK cytoxicity among women experiencing immunologic implantation failure after in vitro fertilization and embryo transfer. J Assist Reprod Genet. 2003;20:58-62 pubmed
  88. Inngjerdingen M, Kveberg L, Naper C, Vaage J. Natural killer cell subsets in man and rodents. Tissue Antigens. 2011;78:81-8 pubmed publisher
  89. Mavilio D, Benjamin J, Kim D, Lombardo G, Daucher M, Kinter A, et al. Identification of NKG2A and NKp80 as specific natural killer cell markers in rhesus and pigtailed monkeys. Blood. 2005;106:1718-25 pubmed
  90. Alter G, Malenfant J, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294:15-22 pubmed
  91. Rodríguez Caulo E, Velazquez C, Barquero J, Garcia Borbolla M. Atypical chest pain and hemoptysis 27 years after aortic coarctation surgery: aortobronchial fistula, management and endovascular treatment. Rev Esp Cardiol. 2011;64:726-7 pubmed publisher
  92. Habu S, Hayakawa K, Okumura K, Tada T. Surface markers on natural killer cells of the mouse. Eur J Immunol. 1979;9:938-42 pubmed
  93. Brinkmann V, Kristofic C. Massive production of Th2 cytokines by human CD4+ effector T cells transiently expressing the natural killer cell marker CD57/HNK1. Immunology. 1997;91:541-7 pubmed
  94. Ritson A, Bulmer J. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology. 1987;62:329-31 pubmed
  95. Biuling F, Tonevitskii A, Kiuster U, Anzorge S. [Study of dipeptidyl peptidase IV as a surface marker of human natural killer cells]. Biull Eksp Biol Med. 1990;110:411-3 pubmed
  96. Körfer A, Kirchner H, Schneekloth C, Buhrer C, Wisniewski D, Gulati S, et al. Immunophenotypic demonstration of two natural killer surface markers, H25 and H366, on fresh human leukemic cells. Acta Haematol. 1989;82:193-6 pubmed
  97. Yousefzadeh M, Flores R, Zhu Y, Schmiechen Z, Brooks R, Trussoni C, et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021;594:100-105 pubmed publisher
  98. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed publisher
  99. Reichart D, Lindberg E, Maatz H, Miranda A, Viveiros A, Shvetsov N, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science. 2022;377:eabo1984 pubmed publisher
  100. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell. 2015;161:1566-75 pubmed publisher
  101. Xie H, Laird D, Chang T, Hu V. A mitosis-specific phosphorylation of the gap junction protein connexin43 in human vascular cells: biochemical characterization and localization. J Cell Biol. 1997;137:203-10 pubmed
  102. Gabisonia K, Prosdocimo G, Aquaro G, Carlucci L, Zentilin L, Secco I, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569:418-422 pubmed publisher
  103. Seok H, Lee H, Lee S, Ahn S, Lee H, Kim G, et al. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature. 2020;584:279-285 pubmed publisher
  104. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569:66-72 pubmed publisher
  105. Yokota T, McCourt J, Ma F, Ren S, Li S, Kim T, et al. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell. 2020;: pubmed publisher
  106. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed publisher
  107. Yoshinaga K, Muramatsu H, Muramatsu T. Immunohistochemical localization of the carbohydrate antigen 4C9 in the mouse embryo: a reliable marker of mouse primordial germ cells. Differentiation. 1991;48:75-82 pubmed
  108. Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P, Dalbies Tran R. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15,andVASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol Reprod. 2004;71:1359-66 pubmed
  109. Maatouk D, Kellam L, Mann M, Lei H, Li E, Bartolomei M, et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development. 2006;133:3411-8 pubmed
  110. Lifschitz Mercer B, Elliott D, Issakov J, Leider Trejo L, Schreiber L, Misonzhnik F, et al. Localization of a specific germ cell marker, DAZL1, in testicular germ cell neoplasias. Virchows Arch. 2002;440:387-91 pubmed
  111. Zeeman A, Stoop H, Boter M, Gillis A, Castrillon D, Oosterhuis J, et al. VASA is a specific marker for both normal and malignant human germ cells. Lab Invest. 2002;82:159-66 pubmed
  112. Tsukamoto H, Yoshitake H, Mori M, Yanagida M, Takamori K, Ogawa H, et al. Testicular proteins associated with the germ cell-marker, TEX101: involvement of cellubrevin in TEX101-trafficking to the cell surface during spermatogenesis. Biochem Biophys Res Commun. 2006;345:229-38 pubmed
  113. Lifschitz Mercer B, Elliott D, Leider Trejo L, Schreiber Bramante L, Hassner A, Eisenthal A, et al. Absence of RBM expression as a marker of intratubular (in situ) germ cell neoplasia of the testis. Hum Pathol. 2000;31:1116-20 pubmed
  114. Sugihara T, Wadhwa R, Kaul S, Mitsui Y. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics. 1999;57:130-6 pubmed
  115. Rey R, Sabourin J, Venara M, Long W, Jaubert F, Zeller W, et al. Anti-Müllerian hormone is a specific marker of sertoli- and granulosa-cell origin in gonadal tumors. Hum Pathol. 2000;31:1202-8 pubmed
  116. Rodgers K, Marks J, Ellefson D, Yanagihara D, Tonetta S, Vasilev S, et al. Follicle regulatory protein: a novel marker for granulosa cell cancer patients. Gynecol Oncol. 1990;37:381-7 pubmed
  117. Pautier P, Bidart J, Lallou N, Duvillard P, Michel G, Droz J, et al. [Value of inhibin as a tumor marker in granulosa cell tumors. Apropos of 6 new cases treated at the Gustave-Roussy Institute]. Bull Cancer. 1995;82:557-60 pubmed
  118. Lappöhn R, Burger H, Bouma J, Bangah M, Krans M, de Bruijn H. Inhibin as a marker for granulosa-cell tumors. N Engl J Med. 1989;321:790-3 pubmed
  119. Yoshioka S, Fujiwara H, Higuchi T, Yamada S, Maeda M, Fujii S. Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-alpha. Mol Hum Reprod. 2003;9:311-9 pubmed
  120. Skinner M, McKeracher H, Dorrington J. Fibronectin as a marker of granulosa cell cytodifferentiation. Endocrinology. 1985;117:886-92 pubmed
  121. Schneider U, Schwenk H, Bornkamm G. Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19:621-6 pubmed
  122. Quirk S, Cowan R, Harman R. Role of the cell cycle in regression of the corpus luteum. Reproduction. 2013;145:161-75 pubmed publisher
  123. Dickinson R, Stewart A, Myers M, Millar R, Duncan W. Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology. 2009;150:2873-81 pubmed publisher
  124. Goto M, Iwase A, Ando H, Kurotsuchi S, Harata T, Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J Assist Reprod Genet. 2007;24:541-6 pubmed
  125. Neumann E, Patterson N, Rivera E, Allen J, Brewer M, deCaestecker M, et al. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int. 2022;101:137-143 pubmed publisher
  126. Heneberg P. Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates. Curr Pharm Des. 2011;17:3753-71 pubmed
  127. Virk H, Rekas M, Biddle M, Wright A, Sousa J, Weston C, et al. Validation of antibodies for the specific detection of human TRPA1. Sci Rep. 2019;9:18500 pubmed publisher
  128. Ouadah Y, Rojas E, Riordan D, Capostagno S, Kuo C, Krasnow M. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell. 2019;179:403-416.e23 pubmed publisher
  129. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed publisher
  130. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163:295-302 pubmed
  131. De Camilli P, Miller P, Levitt P, Walter U, Greengard P. Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience. 1984;11:761-817 pubmed
  132. Hallem J, Thompson J, Gundappa Sulur G, Hawkes R, Bjaalie J, Bower J. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience. 1999;93:1083-94 pubmed
  133. Pakan J, Iwaniuk A, Wylie D, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol. 2007;501:619-30 pubmed
  134. Lannoo M, Hawkes R. A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci Lett. 1997;237:53-5 pubmed
  135. Yan J, Jiao Y, Jiao F, Stuart J, Donahue L, Beamer W, et al. Effects of carbonic anhydrase VIII deficiency on cerebellar gene expression profiles in the wdl mouse. Neurosci Lett. 2007;413:196-201 pubmed
  136. Nakamura Y, Yamamoto M, Oda E, Kanemura Y, Kodama E, Yamamoto A, et al. A novel marker for Purkinje cells, KIAA0864 protein. An analysis based on a monoclonal antibody HFB-16 in developing human cerebellum. J Histochem Cytochem. 2005;53:423-30 pubmed
  137. Morita T, Nakamura K, Sawada M, Shimada A, Sato K, Miyata H, et al. Inositol 1,4,5-triphosphate receptor protein immunohistochemistry of cerebellar Purkinje cells in two dogs with hypoglycemia. Vet Pathol. 2004;41:82-6 pubmed
  138. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, et al. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem. 1991;266:1109-16 pubmed
  139. Miyata M, Miyata H, Mikoshiba K, Ohama E. Development of Purkinje cells in humans: an immunohistochemical study using a monoclonal antibody against the inositol 1,4,5-triphosphate type 1 receptor (IP3R1). Acta Neuropathol. 1999;98:226-32 pubmed
  140. Muller J, Mascagni F, McDonald A. Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol. 2006;494:635-50 pubmed
  141. Filippov A, Choi R, Simon J, Barnard E, Brown D. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci. 2006;26:9340-8 pubmed
  142. Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Cell type- and region-specific expression of neurogranin mRNA in the cerebral cortex of the macaque monkey. Cereb Cortex. 2004;14:1134-43 pubmed
  143. Lalonde J, Lachance P, Chaudhuri A. Monocular enucleation induces nuclear localization of calcium/calmodulin-dependent protein kinase IV in cortical interneurons of adult monkey area V1. J Neurosci. 2004;24:554-64 pubmed
  144. Wannier T, Schmidlin E, Bloch J, Rouiller E. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. J Neurotrauma. 2005;22:703-17 pubmed
  145. del Rio M, Defelipe J. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J Comp Neurol. 1994;342:389-408 pubmed
  146. Castro P, Pleasure S, Baraban S. Hippocampal heterotopia with molecular and electrophysiological properties of neocortical neurons. Neuroscience. 2002;114:961-72 pubmed
  147. Frantz G, Bohner A, Akers R, McConnell S. Regulation of the POU domain gene SCIP during cerebral cortical development. J Neurosci. 1994;14:472-85 pubmed
  148. Hammond V, Howell B, Godinho L, Tan S. disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J Neurosci. 2001;21:8798-808 pubmed
  149. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588:124-129 pubmed publisher
  150. González Hoyuela M, Barbas J, Rodriguez Tebar A. The autoregulation of retinal ganglion cell number. Development. 2001;128:117-24 pubmed
  151. Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp Eye Res. 2007;84:868-75 pubmed
  152. Gonzalez Martinez T, Perez Pinera P, Díaz Esnal B, Vega J. S-100 proteins in the human peripheral nervous system. Microsc Res Tech. 2003;60:633-8 pubmed
  153. Harauz G, Ishiyama N, Hill C, Bates I, Libich D, Fares C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004;35:503-42 pubmed
  154. Hagenäs L, Ritzen E, Ploöen L, Hansson V, French F, Nayfeh S. Sertoli cell origin of testicular androgen-binding protein (ABP). Mol Cell Endocrinol. 1975;2:339-50 pubmed
  155. Tevosian S, Albrecht K, Crispino J, Fujiwara Y, Eicher E, Orkin S. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development. 2002;129:4627-34 pubmed
  156. Lavoie H. The role of GATA in mammalian reproduction. Exp Biol Med (Maywood). 2003;228:1282-90 pubmed
  157. Shwartz Y, Gonzalez Celeiro M, Chen C, Pasolli H, Sheu S, Fan S, et al. Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells. Cell. 2020;: pubmed publisher
  158. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res. 2011;317:188-94 pubmed publisher
  159. Han E, Qian H, Jiang B, Figetakis M, Kosyakova N, Tellides G, et al. A therapeutic vascular conduit to support in vivo cell-secreted therapy. NPJ Regen Med. 2021;6:40 pubmed publisher
  160. Pauls K, Jäger R, Weber S, Wardelmann E, Koch A, Buttner R, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer. 2005;115:470-7 pubmed
  161. Hoei Hansen C, Nielsen J, Almstrup K, Sonne S, Graem N, Skakkebaek N, et al. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res. 2004;10:8521-30 pubmed
  162. Hechelhammer L, Störkel S, Odermatt B, Heitz P, Jochum W. Epidermal growth factor receptor is a marker for syncytiotrophoblastic cells in testicular germ cell tumors. Virchows Arch. 2003;443:28-31 pubmed
  163. Aubry F, Satie A, Rioux Leclercq N, Rajpert De Meyts E, Spagnoli G, Chomez P, et al. MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer. 2001;92:2778-85 pubmed
  164. de Jong J, Looijenga L. Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit Rev Oncog. 2006;12:171-203 pubmed
  165. Waclawek M, Foisner R, Nimpf J, Schneider W. The chicken homologue of zona pellucida protein-3 is synthesized by granulosa cells. Biol Reprod. 1998;59:1230-9 pubmed
  166. Vigot R, Kado R, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol. 2004;142:69-75 pubmed
  167. Slemmon J, Danho W, Hempstead J, Morgan J. Cerebellin: a quantifiable marker for Purkinje cell maturation. Proc Natl Acad Sci U S A. 1985;82:7145-8 pubmed
  168. Slemmon J, Goldowitz D, Blacher R, Morgan J. Evidence for the transneuronal regulation of cerebellin biosynthesis in developing Purkinje cells. J Neurosci. 1988;8:4603-11 pubmed
  169. Yasuhara O, Aimi Y, Yamada T, Matsuo A, McGeer E, McGeer P. Clusterin as a marker for ischaemic Purkinje cells in human brain. Neurodegeneration. 1994;3:325-9 pubmed
  170. Zanjani H, Lemaigre Dubreuil Y, Tillakaratne N, Blokhin A, McMahon R, Tobin A, et al. Cerebellar Purkinje cell loss in aging Hu-Bcl-2 transgenic mice. J Comp Neurol. 2004;475:481-92 pubmed
  171. Southwood C, Peppi M, Dryden S, Tainsky M, Gow A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res. 2007;32:187-95 pubmed
  172. Kakegawa W, Tsuzuki K, Iino M, Ozawa S. Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells. Eur J Neurosci. 2003;17:887-91 pubmed
  173. Pittock S, Kryzer T, Lennon V. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol. 2004;56:715-9 pubmed
  174. Vernino S, Lennon V. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol. 2000;47:297-305 pubmed
  175. Lee H, Lennon V, Camilleri M, Prather C. Paraneoplastic gastrointestinal motor dysfunction: clinical and laboratory characteristics. Am J Gastroenterol. 2001;96:373-9 pubmed
  176. Tolosa de Talamoni N, Smith C, Wasserman R, Beltramino C, Fullmer C, Penniston J. Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum. Proc Natl Acad Sci U S A. 1993;90:11949-53 pubmed
  177. Kurnellas M, Lee A, Li H, Deng L, Ehrlich D, Elkabes S. Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci. 2007;34:178-88 pubmed
  178. Sepulveda M, Hidalgo Sanchez M, Marcos D, Mata A. Developmental distribution of plasma membrane Ca2+-ATPase isoforms in chick cerebellum. Dev Dyn. 2007;236:1227-36 pubmed
  179. Sepulveda M, Hidalgo Sanchez M, Mata A. A developmental profile of the levels of calcium pumps in chick cerebellum. J Neurochem. 2005;95:673-83 pubmed
  180. Hayashi N, Oohira A, Miyata S. Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res. 2005;1050:163-9 pubmed
  181. Shimada A, Tsuzuki M, Keino H, Satoh M, Chiba Y, Saitoh Y, et al. Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol. 2006;32:1-14 pubmed
  182. Curtetti R, Garbossa D, Vercelli A. Development of dendritic bundles of pyramidal neurons in the rat visual cortex. Mech Ageing Dev. 2002;123:473-9 pubmed
  183. Yeh T, Wang H. Global ischemia downregulates the function of metabotropic glutamate receptor subtype 5 in hippocampal CA1 pyramidal neurons. Mol Cell Neurosci. 2005;29:484-92 pubmed
  184. Mannaioni G, Marino M, Valenti O, Traynelis S, Conn P. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci. 2001;21:5925-34 pubmed
  185. Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum J, Schlessinger J, et al. Receptor protein tyrosine phosphatase gamma is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol. 2006;26:5106-19 pubmed
  186. Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M. Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. Brain Res Mol Brain Res. 1999;72:47-54 pubmed
  187. Sanborn B, Elkington J, Steinberger A, Steinberger E. Androgen binding in the testis: in vitro production of androgen binding protein (ABP) by Sertoli cell cultures and measurement of nuclear bound androgen by a nuclear exchange assay. Curr Top Mol Endocrinol. 1975;2:293-309 pubmed
  188. Hansson V, Weddington S, Naess O, Attramadal A, French F, Kotite N, et al. Testicular androgen binding protein (ABP) - a parameter of Sertoli cell secretory function. Curr Top Mol Endocrinol. 1975;2:323-36 pubmed
  189. Bar Shira Maymon B, Yavetz H, Yogev L, Kleiman S, Lifschitz Mercer B, Schreiber L, et al. Detection of calretinin expression in abnormal immature Sertoli cells in non-obstructive azoospermia. Acta Histochem. 2005;107:105-12 pubmed
  190. Clark A, Griswold M. Expression of clusterin/sulfated glycoprotein-2 under conditions of heat stress in rat Sertoli cells and a mouse Sertoli cell line. J Androl. 1997;18:257-63 pubmed
  191. Cheng C, Chen C, Feng Z, Marshall A, Bardin C. Rat clusterin isolated from primary Sertoli cell-enriched culture medium is sulfated glycoprotein-2 (SGP-2). Biochem Biophys Res Commun. 1988;155:398-404 pubmed
  192. Franke F, Pauls K, Rey R, Marks A, Bergmann M, Steger K. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl). 2004;209:169-77 pubmed
  193. Bar Shira Maymon B, Paz G, Elliott D, Hammel I, Kleiman S, Yogev L, et al. Maturation phenotype of Sertoli cells in testicular biopsies of azoospermic men. Hum Reprod. 2000;15:1537-42 pubmed
  194. Yagi M, Takenaka M, Suzuki K, Suzuki H. Reduced mitotic activity and increased apoptosis of fetal sertoli cells in rat hypogonadic (hgn/hgn) testes. J Reprod Dev. 2007;53:581-9 pubmed
  195. Jimenez Severiano H, Mussard M, Fitzpatrick L, D Occhio M, Ford J, Lunstra D, et al. Testicular development of Zebu bulls after chronic treatment with a gonadotropin-releasing hormone agonist. J Anim Sci. 2005;83:2111-22 pubmed
  196. Bielinska M, Seehra A, Toppari J, Heikinheimo M, Wilson D. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn. 2007;236:203-13 pubmed
  197. Imai T, Kawai Y, Tadokoro Y, Yamamoto M, Nishimune Y, Yomogida K. In vivo and in vitro constant expression of GATA-4 in mouse postnatal Sertoli cells. Mol Cell Endocrinol. 2004;214:107-15 pubmed
  198. McCoard S, Lunstra D, Wise T, Ford J. Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period. Biol Reprod. 2001;64:689-95 pubmed
  199. Tremblay J, Viger R. Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biol Reprod. 2001;64:1191-9 pubmed
  200. Chowdhury M, Steinberger A, Steinberger E. Inhibition of de novo synthesis of FSH by the Sertoli cell factor (SCF). Endocrinology. 1978;103:644-7 pubmed
  201. Hofmann M, Van Der Wee K, Dargart J, Dirami G, Dettin L, Dym M. Establishment and characterization of neonatal mouse sertoli cell lines. J Androl. 2003;24:120-30 pubmed
  202. Fox R, Sigman M, Boekelheide K. Transmembrane versus soluble stem cell factor expression in human testis. J Androl. 2000;21:579-85 pubmed
  203. Hakovirta H, Yan W, Kaleva M, Zhang F, Vänttinen K, Morris P, et al. Function of stem cell factor as a survival factor of spermatogonia and localization of messenger ribonucleic acid in the rat seminiferous epithelium. Endocrinology. 1999;140:1492-8 pubmed
  204. Mauduit C, Chatelain G, Magre S, Brun G, Benahmed M, Michel D. Regulation by pH of the alternative splicing of the stem cell factor pre-mRNA in the testis. J Biol Chem. 1999;274:770-5 pubmed
  205. Syed V, Hecht N. Selective loss of Sertoli cell and germ cell function leads to a disruption in sertoli cell-germ cell communication during aging in the Brown Norway rat. Biol Reprod. 2001;64:107-12 pubmed
  206. Syed V, Gomez E, Hecht N. Messenger ribonucleic acids encoding a serotonin receptor and a novel gene are induced in Sertoli cells by a secreted factor(s) from male rat meiotic germ cells. Endocrinology. 1999;140:5754-60 pubmed
  207. Zhao C, Bratthauer G, Barner R, Vang R. Immunohistochemical analysis of sox9 in ovarian Sertoli cell tumors and other tumors in the differential diagnosis. Int J Gynecol Pathol. 2007;26:1-9 pubmed
  208. Kato N, Fukase M, Motoyama T. Expression of a transcription factor, SOX9, in Sertoli-stromal cell tumors of the ovary. Int J Gynecol Pathol. 2004;23:180-1 pubmed
  209. Hemendinger R, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant. 2002;11:499-505 pubmed
  210. Fröjdman K, Harley V, Pelliniemi L. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol. 2000;113:31-6 pubmed
  211. Rogatsch H, Jezek D, Hittmair A, Mikuz G, Feichtinger H. Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Arch. 1996;427:497-502 pubmed
  212. Steger K, Rey R, Kliesch S, Louis F, Schleicher G, Bergmann M. Immunohistochemical detection of immature Sertoli cell markers in testicular tissue of infertile adult men: a preliminary study. Int J Androl. 1996;19:122-8 pubmed
ISSN : 2329-5139